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A general representation of solutions in the problem of antiplane deformed 
state of the medium with governing relations of the type met in the deforma- 
tional theory is given. It is shown that by imposing very weak restrictions on 
the form of the uni~ials~~-scan diagram,~e basic equations of the problem 
can be reduced to a generalized Cauchy-Riemann system defining, as the 

representation, generalized analytic functions of the complex variable, Thus 
the problem of antiplane deformation becomes a boundary value problem of 
the theory of P- analytic function [l]. A problem of a crack emerging at the 

boundary of the half - plane is considered, existence and uniqueness of the so - 
lution is proved and the asymptotics of the solution for arbitrary values of the 
loading parameter is obtained. The possibility of representing the solutions in 
closed form is considered. 

The above problem was investigated in [Z] under more stringent assumptions 
concerning the stress - strain relations. 

1, The basic system of equations of the problem has the form 

(1.1) 

Here ‘&, 7,, “1s Yx, ‘1s yv are the shear components of the stress and strain tensors 
in the Cartesian coordinate system (the index z is omitted for simplicity), while Z 
and ‘1s y denote the intensities of their deviators. It is assumed that the process of de- 
formation is quasi - static. 

We shall show that certain problems of the steady distribution of current in nonli - 
nearly conducting media (see e.g. [3]) also lead to a system of the form (1.1) (this is 
apparently the first time that such an analogy has been observed). 

The known representations of the solutions of (1.1) refer to various type approxi - 
mations of the relation z (r). These representations made it possible to obtain solutions 
of the problems of concentration of stresses and deformations in elastoplastic media [4], 
important for the practical applications. We shall mention, in particular, CZ] where a 
representation for (1.1) was obtained for the case of a semi - plane with an angular cut- 
out under the assumption that the initial segment of the diagram was linear, 

Let us consider the system (1.1) in the general case, assuming that the function 
-c(Y) E c, (0, 00). Introducing the governing equations into the equation of equilib - 
rium, we find from (1.1) 
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The system (1.2) is quasi-linear and of first order in yz (x, #), yv fx, y), It can be 
shown using the well known methods that (1.2) is elliptical whenz’ (y) > 0, hyperbolic 

when ‘c’ (y) < 0 and parabolic when CG’ (y) = 0. For the elastoplastic problems the 
above cases correspond to a hardening, softening [5] and a perfectly plastic medium, 
and for the media with nonlinear Ohm’s law, to the stable, unstable and a saturation 
segment respectively [3]. 

Taking into account the reducibility [6] of the system, we linearize it with the 
help of a hodograph transformation with the independent variables ‘yg, yx, so that 

Let us inspect the case when the transformation is degenerate. Satisfying the equa- 
tion A = 0, we set 

ay,_ aY 
ax 

-_h!g, _.+i$ (h = h (2, yji (1.4) 

~fferentiating the second equation of (I. 2) with respect to x and using relations 
(1.4), we obtain the following equation for h (x, y) : 

The general integral of this equation has the form AX + y = c (A), therefore in the 
degenerate case the system (1.2) has rectilinear characteristics belonging to the family 
x = con.?&. 

Using the relations (1.4) we can confirm that the deformed state is simple [ 6 ] 
(yX = JQ (Ax + y), yr, = yv (Ax + y)). The latter is realized e.g. near a circu- 

lar, stress - free opening in an elastic, perfectly plastic medium. 
Returning to the general case A # 0 and inserting (1.3) into (1. ‘2), we obtain 

az 3Y 0 ---= 

% %z 
Equations analogous to (1.5) were obtained in a different manner in [2]. 

Let us transform the system (1.5) using the logarithmic polar coordinate system 

(1.6) 
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Introducing the unknown functions a (P, cp) = r sin 9 -t y cos cp, b (PI 99 = 
5 cos cp - y sin cp and a system of independent variables E = 9 

we obtain from (1.6) 

The above system admits a transformation of the dependent variables * and the trans- 
formation reduces it to a generalized Cauchy - Riemann system. Setting 

we obtain 

a=aexp(-Spdq), b=/3exp(-\$j 
Lfexp(~($-pjdq), p=1Jx 

Thus f (t;) = cf $ is is a generalized analytic function of the variable c= E + fq 
with the characteristic P. The latter depends on the variable q only, therefore f (5) 
belongs to an invariant class Cl]. 

It follows therefore that the problem of nonlinear - elastic deformation under the 
conditions of antiplane state, reduces to a boundary value problem of the theory of P- 

analytic functions (pseudoanalytic) developed in [l ,7], et al. 
The known applications of this theory to the problems of mechanics refer chiefly to 

the theory of filtration, to the axisymmetric problem of the theory of elasticity and to 
the plane problem of the theory of plasticity where it was found helpful in formula~ng 

the majorant methods and gave, in a number of cases, closed solutions [l]. 

2, The problem formulated above is linear (e. g. it represents the generalized 
Riemann - Hilbert conjugation problem, provided that the boundary conditions given on 
the known mappings of the region boundaries in the z - plane onto the 5 - plane are 

linear. In particular, this always takes place in the case of the boundary value problems 
for polygons with homogeneous boundary conditions. 

As an example, we shall use the representation obtained in Sect. 1 for a semiplane 
D = (z > 0, 1 y f ( OO) with a crack or cut ~3 = (0 \c J: < I, y = 0}, which 
is subjected to a homogeneous shear of magnitude y- at infinity. 

Let us introduce the complex function 

!2 (5) = ((exp 5)” - q’f* (q = Im 5, r (~4 = 0, pm = hq~,) 

which maps, together with the hodograph tra~f~mat~on, c = 5 (2) t the region LI 
onto the semiplane D+” = fRe Q > 0). Since 52 (5) is’analytic in D , the system 
(1.8) becomes 
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a@ I&x Q 

----= 

3% R ask, 

R = 1 / P (In 1 vQs + 1 I), Q = Ql + i 52, 
(2.1> 

and defines the function f (a) = p + ia, R- analytic in D,“. 
Remembering that & = 0 when x = 0 and g = + z / 2 when y = 0,O < - 

x < 2, we obtain , in accordance with (1.7), the boundary condition 

p = Ref = 0 (52, = 0) (2.2) 

Let us, in addition, define the solution in the semiplane D_” = {n, ( 0) according 
to the rule f (Q) = - f1-g). W e see from (2.2) that the function f (Q) is conti- 
nuous on the ima~nary axis and satisfies the relations (2.1) in D” = D+O U L>_O, 

except at the single- valued singularities Q I=: 0, m. In order to find the asymptotics 
at the above points, we note that according to (1.7) 

a = a~, /3 = by, f (Q) = by + iaz (2.3) 

so that when z -+ E and z + 00, we obtain from (2.3), respectively, 

f- E (y cos E + i7 sin E), f - by, + izd (b + ia = .& ) (2.4) 

Satisfying the first asymptotic of (2.4). we set 

f (Q) = fi m + F 6-Q CL 5) 

It can easily be shown that the function fi (a) is R-analytic and has, according to 
(2.5) ) a first order pole at ti =i 00. It follows therefore that P (52) is holomorphic 
in the neighborhood of Q 3 00 in the sense of generalized analytic functions. 

When z -+ 00 and Q + 0, (2.1) yields the asymptotics 

When R (0) =: 1 , the solution should coincide with the linearly elastic solution, there- 
fore, r~ember~g that the spectrum of the parameter FZ is discrete, we must set n =‘i 
in (2.6). In this case the function F(Q) has a first order pole at Q = Q and can be 
written in the form 

F (8) = fs (Q + f3 63 (2. v 

where the singularity f3 (52) is, in accordance with (2.6)‘ removable. 

We note that fi (52) and fa (Q) are holomorphic (or have removable singularities) 
at Q = 00 and 0 respectively, while the R -analytic function fs $2) has no sin- 

gularities in Do except, perhaps, some removable ones. 
The pseudoanalytic function can be determined by specifying a set of its singulari- 

ties in the complete plane, consequently from (2.5)-(2.7) we can assert that a solution 
of the problem exists. 
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To prove uniqueness it is sufficient to assume that another solution g (Q) exists and 
apply the generaIized Liouville theorem [l} to the functionf (a) - g (Q) R - analy - 
tic in Do. 

3. Let us now consider whether the linear boundary value problems for the system 
(1.8) have solutions in closed form. In [l] it was shown that the sufficient condition 
for these solutions to exist is, that its characteristic can be written in the form 

P (q) = cy”, k > 0 (3.1) 

Let us find the relations z = ‘G (y) which satisfy the condition (3.1). Assuming 
that in the last relation of (1.7) 

we find that the function p (q) satisfies the equation 

p’q + /ip + ‘1p2 :r= 7 (3.2) 

which defines it to within the constants k and p (0). This implies that the correspon - 

ding clash of the diagrams z (y) is three - parametric. In particular, for a medium sa - 
tisfying Hooke’s Law we must set X: = 0, p (0) = 1. 

A number of concrete problems can be solved using the solutions of (3.2) to appro- 
ximate segments of the prescribed relationship and making use of the representations for 
the ?j6-analytic functions. Another way of constmcting the solutions consists of writing 

the general integral of the system in the form of linear combinations of analytic func - 

tions and their derivatives (some cases relating to the plane problem of the theory of 
plasticity were studied in 183) _ Let 

P (VI -I 1 - E (q), sup j E (r() 1 = 6 on TO < 11 6 771. 

The characteristic of the function at 6 = 0 (1) has the form 

p = 1 + 2& (11 - To) -t E @l) -t 0 (S2) (0 d 1 f I\< 1) 

and this implies that the representation uses the linearly elastic solution and its deri - 
vatives. 
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